内页banner

forged tube sheet

Home

forged tube sheet

  • Tube sheet in heat exchangers
    Apr 25, 2024
    What is a tube sheet for heat exchanger? One of the most common heat exchangers in service within industrial process applications is the “Tube Sheet Heat Exchangers”. They are available in many shapes, sizes and have been used in industry for over 150 years. In this exchanger group are various sub design types: Fixed, U-tube and Floating tubes heet. Variations of all can be denoted as type “E”, “F”, “G”, “H”, “J”, “K” or “X”. The main applications are where high pressure/temperatures are key considerations. Loosely, general designs consist of the/an outer shell in which resides a tube bundle (these can be configured as finned, plain etc) sealed at each end by a tube sheet which isolates the tubes and the outer shell.     How does a heat exchanger work? Tube Sheet Heat Exchangers have the capability to transfer large amounts of heat at low(er) costs. This, in principle, down to both design simplicity and effectiveness – large tube surface for reduced weight, volume of liquid and importantly floor space.   Whilst there is a wide variety to choose from there are certain key components similar in all. Tube sheets have tubes attached to them within the body or “shell” of the heat exchanger. The tubes allow the movement of a given medium (gas/fluid) through the shell chamber stopping it mixing with a second fluid medium that lies outside these tubes. As long as there is a temperature difference between these, in effect, the two flow past one another exchanging heat without ever mixing. Tube sheets can be fixed or floating dependent on the application the heat exchanger is designed for.       The role of tube sheets in heat exchangers Tube sheets are a critical component of the final design. There are a multitude of materials they can be manufactured from. Material selection is made after careful consideration as it is in contact with both fluids. It must therefore have the necessary corrosion resistance, electromechanical and metallurgical properties associated for its given working environment.   The tube sheets themselves contain holes drilled into them. This, in a given, very specific design configuration, at very precise locations with critical tolerances. The amounts of holes can range from a few to thousands. These pattern or “pitch” holes are relative to each other tube sheet within the shell. This pitch changes tube distance, angle and flow direction. These parameters have been varied to maximize the heat transfer effectiveness.   Tube Sheet Heat Exchangers of the big advantages of using a shell and tube heat exchanger is that they are often easy to service, particularly with models where a floating tube bundle where the tube plates are not welded to the outer shell is available. Fixed Tube Sheet Heat Exchangers used on fixed tube sheet heat exchangers.    Tube Sheet Heat Exchangers the right choice of materials they can also be used to cool or heat other mediums, such as swimming pool water or charge air. Fixed Tube Sheet Heat Exchangers ideal cooling solution for a wide variety of applications. One of the most common applications is the cooling of hydraulic fluid and oil in engines, transmissions and hydraulic power packs.     How does wuxi changrun work? Because these tube sheets are the main, critical,Wuxi changrun manufactures directly to OEM drawings issued as DXF files. The in house Delcam FeatureCam CAD reading capabilities mean the final product supplied from us is manufactured to the exacting specifications as designed, released and issued from you the client.   Wuxi changrun’s considerable experience in this highly specialized area means that whatever the requirement, whatever the timescale, we have the technical, in house experience and know-how to approach a given task, deliver on time and in budget. This is why the company is entrusted to manufacture to key, blue chip clients across the globe.
    Read More
  • forged tube sheet introduction
    Apr 26, 2024
    What is a forged tube sheet? Forging is a process of manufacturing components by plastic deformation of metal. During the forging process, the metal is pressed to the desired shape. A forged tubesheet is commonly made from a round disc forging with holes drilled to accept the tubes or pipes in an accurate location and pattern relative to one another. The advantages of forging tube sheets are high density, high strength, and good toughness. However, due to the high temperature and specialized equipment required for forging, the cost is relatively high.   A forged tube sheet is a critical component in shell-and-tube heat exchangers. It serves as a support for the heat exchanger tubes and provides a sealed barrier at the ends of the tubes to prevent leakage between the tube-side and shell-side fluids, ensure effective heat transfer or to support filter elements. In shell and tube heat exchangers, two plates support the tubes, one on each end. They are in contact with both fluids on the shell side and the tube side, so they must be corrosion resistant and sealed tightly. Many heat exchanger design codes and standards require forged tubesheets.       Forged Tube Sheet Production Standards: The production standards for forged tube sheets can vary depending on the specific industry and application. However, some common standards that may be followed include:   1.ASME (American Society of Mechanical Engineers) Standards: ASME Boiler and Pressure Vessel Code (BPVC) provides guidelines and standards for the design, fabrication, and inspection of pressure vessels, including heat exchangers. ASME standards ensure that the equipment meets safety and performance requirements.   2. ASTM (American Society for Testing and Materials) Standards: ASTM specifications provide guidelines for the materials used in the fabrication of tube sheets. Different grades of materials are specified based on factors such as temperature, pressure, and corrosion resistance.     Material of Forged Tube Sheets: The choice of material for forged tube sheets depends on the specific requirements of the application. Common the material include: carbon steel tube sheets, stainless steel tube sheets, alloy steel tube sheets. A tubesheet may be covered in a cladding material which serves as a corrosion barrier and insulator which is weld overlay tube sheets. (Know more about welding overlay tube sheet)     Forgings for manufacturing tube sheets need to meet the following performance requirements: 1. High strength: able to withstand high pressure and impact loads, ensuring the stability and safe operation of the tube sheet. 2. Good corrosion resistance: It can resist the corrosion of the medium and extend the service life of the tubesheet. 3. Good sealing: Ensure the normal operation of the tube plate and prevent medium leakage. 4. Good processability: Easy to process into complex shapes to meet the design requirements of tubesheets.     Forged tube sheets find applications in various industries, including: 1. Petrochemical Industry: For heat exchangers in refineries and chemical processing plants. 2. Power Generation: In boilers and steam generators. 3. Oil and Gas Industry: For heat exchangers in oil refineries and offshore platforms. 4. Chemical Processing: In chemical reactors and processing equipment.     Forged tube sheets are crucial components in heat exchangers, manufactured through a forging process to achieve specific mechanical properties. They adhere to industry standards and are chosen for their strength, durability, and resistance to corrosion in various industrial applications. Wuxi changrun specialized in forged tube sheet manufacture.  
    Read More
  • What is the standard for tube sheets?
    Apr 26, 2024
    Tube sheets are commonly used industrial components, widely employed in industries such as chemical, petroleum, pharmaceuticals, and food processing. Tube sheet size standards refer to the standardized size specifications used in the design and manufacturing process to ensure interchangeability and universality of various pipeline equipment. This article provides a detailed introduction to tube sheet size standards.   Tube Sheet Overview 1. Tube Sheet Definition A tube sheet is a device that connects multiple pipelines or equipment and consists of two flat surfaces, typically with numerous holes on the top surface, with each hole connecting to one or more holes on the bottom surface.   2. Tube Sheet Classification Depending on different application scenarios and functional requirements, tube sheets can be categorized into the following types: (1) Distributors: Divert one inlet into two or more outlets. (2) Collectors: Collect two or more inlets into one outlet. (3) Heat Exchangers: Achieve heat exchange through the transfer of heat between internal fluids. (4) Reactors: Complete chemical synthesis or other chemical processes through internal reactions.   Tube Sheet Size Standards 1. Tube Sheet Hole Diameter: In the design and manufacturing process, international standards like ISO/TR 10400 or ASME B16.5 are typically used as standard specifications for tube sheet hole diameters. Both of these standards specify a range of hole sizes, ranging from 1/2 inch to 48 inches.   2. Tube Sheet Thickness: Tube sheet thickness refers to the distance between the top and bottom surfaces of the tube sheet. In the design and manufacturing process, standards such as ASME B16.5 or GB/T 9119 are typically used as standard specifications for tube sheet thickness. These standards specify a range of thicknesses, ranging from 3 millimeters to 100 millimeters.   3. Tube Sheet Hole Spacing: Tube sheet hole spacing refers to the distance between adjacent holes. In the design and manufacturing process, standards like ASME B16.5 or GB/T 9119 are usually used as standard specifications for tube sheet hole spacing. These standards specify a range of hole spacing sizes, ranging from 15 millimeters to 600 millimeters.   4. Tube Sheet Material: Tube sheet material refers to the type and variety of materials used in manufacturing the tube sheet. In the design and manufacturing process, standards such as ASME B16.5, GB/T 9119, or JIS B2220 are typically used as standard specifications for tube sheet materials. These standards classify and specify various material types and varieties.       Frequently Asked Questions   1. What is the purpose of tube sheet size standards? The purpose of tube sheet size standards is to ensure the interchangeability and universality of various pipeline equipment, allowing pipeline equipment produced by different manufacturers to be compatible and work together.   2. What is the relationship between tube sheet hole diameter, thickness, and hole spacing? There is no direct relationship between tube sheet hole diameter, thickness, and hole spacing. Different tube sheet size standards specify different ranges of hole diameter, thickness, and hole spacing sizes, and users can choose the appropriate specifications according to their needs.   3. What are the common types of tube sheet materials? Common tube sheet materials include carbon steel, stainless steel, alloy steel, copper, aluminum, and more. Users can select the appropriate material type and variety based on their specific requirements.       Conclusion Tube sheet size standards are crucial for ensuring the interchangeability and universality of various pipeline equipment and should be strictly followed during the design and manufacturing process.    Wuxi Changrun has provided high-quality tube sheets, nozzles, flanges, and customized forgings for heat exchangers, boilers, pressure vessels, etc. to many well-known petrochemical enterprises at home and abroad. Our customers include PetroChina, Sinopec, Chevron, Bayer, Shell, BASF, etc. Send your drawings to sales@wuxichangrun.com We will provide you with the best quotation and the highest quality products.  
    Read More
  • Do you know the structure of shell and tube heat exchanger?
    Apr 29, 2024
    A shell and tube heat exchanger consists of a shell, heat transfer tube bundle, tube sheet, baffle plate (baffle), and channel. The shell is mostly cylindrical with a tube bundle inside, and the two ends of the tube bundle are fixed on the tubesheet. There are two types of heat transfer fluids: hot fluid and cold fluid. One is the fluid inside the tube, called the tube side fluid; Another type is the fluid outside the pipe, called the shell side fluid.     1. What is Shell? The shell serves as the outer housing of the heat exchanger. It contains one of the fluid streams and is typically constructed from materials such as carbon steel, stainless steel, or other alloys depending on the application and operating conditions.   2. What is Tube Bundle? The tube bundle is the core component of the heat exchanger where heat transfer occurs. It consists of a series of tubes through which one fluid flows while the other fluid flows around the outside of the tubes. The tubes can be straight or bent, and they are usually made of materials such as copper, stainless steel, or titanium.   3. What is Tubesheet? The tubesheet is a thick metal plate located at both ends of the tube bundle. It serves to support and secure the tubes in place, providing a leak-proof seal between the tube bundle and the shell.   4. What are Baffles? Baffles are plates or spacers placed inside the shell to direct the flow of the shell-side fluid. They promote turbulence in the fluid flow, which enhances heat transfer efficiency by increasing the mixing of the fluid. Baffles also help to support the tubes and prevent vibration.   5. What is Baffle Plate? The baffle plate is a large plate attached to the inner wall of the shell. It supports the baffles and helps to guide the flow of the shell-side fluid through the heat exchanger.   6. What is Front Channel and Rear Channel? These are the spaces between the baffles where the shell-side fluid flows around the tube bundle. The front channel is located near the inlet of the shell-side fluid, while the rear channel is located near the outlet.   7. What is Tube Side Connection? These are the inlet and outlet connections for the fluid flowing through the tubes. They allow the tube-side fluid to enter and exit the heat exchanger.   8. What is Shell Side Connection? These are the inlet and outlet connections for the fluid flowing around the outside of the tubes. They allow the shell-side fluid to enter and exit the heat exchanger.   9. What is Vent? The vent is an opening on the shell of the heat exchanger used to remove trapped air or gases during startup or operation. It ensures proper operation and prevents air pockets from interfering with heat transfer.   10. What is Drain? The drain is an opening on the shell or tubesheet used to remove liquid from the heat exchanger. It is typically used for maintenance purposes or for draining the system during shutdowns.   11. What is Expansion Joint? An expansion joint is a flexible element installed in the shell or tube bundle to accommodate thermal expansion and contraction. It prevents damage to the heat exchanger caused by temperature fluctuations.   12. What are Heat Exchanger Legs? Legs are support structures attached to the bottom of the heat exchanger to elevate it above the ground or other surfaces. They provide stability and facilitate installation and maintenance.   13. Lifting Lug? Lifting lugs are welded to the shell of the heat exchanger and used for lifting and handling during installation or maintenance.   14. Reinforcing Pad? Reinforcing pads are additional material welded to the shell or other components to strengthen areas subjected to high stress or pressure, such as nozzle connections.   These components work together to facilitate efficient heat transfer between the two fluid streams while ensuring structural integrity, reliability, and safety of the heat exchanger.    Wuxi Changrun has provided high-quality tube sheets, nozzles, flanges, and customized forgings for heat exchangers, boilers, pressure vessels, etc. to many well-known petrochemical enterprises at home and abroad. Our customers include PetroChina, Sinopec, Chevron, Bayer, Shell, BASF, etc. Send your drawings to sales@wuxichangrun.com We will provide you with the best quotation and the highest quality products.
    Read More
  • The Testing methods of tube sheet
    Apr 29, 2024
    What are the tube sheet inspection and testing methods? Tube sheet inspection and testing methods are used to ensure the integrity and safety of tube sheets, which are components used in heat exchangers and other types of equipment. There are several methods used for tube sheet inspection and testing, including:   Visual Inspection This is the simplest method of tube sheet inspection, which involves a visual examination of the tube sheet surface for any visible cracks, corrosion, erosion or other signs of damage.   Dye Penetrant Test (PT) This method involves applying a dye penetrant to the surface of the tube sheet and then wiping off the excess. The penetrant is then drawn into any cracks or other surface defects by capillary action. A developer is applied, which draws the penetrant out of the cracks and makes them visible.   Magnetic Particle Test (MT) This method involves applying a magnetic field to the tube sheet and then applying ferromagnetic particles to the surface. Any surface cracks or defects will cause the magnetic field to be distorted, making the particles cluster at the location of the defect, which can then be visually detected.   Ultrasonic Testing (UT) This method uses high-frequency sound waves to detect defects in the tube sheet. A probe is placed on the surface of the tube sheet, which emits sound waves that travel through the material. Any defects in the material will cause some of the sound waves to be reflected back to the probe, which can be detected and analyzed.   Eddy Current Testing (ECT) This method involves passing an alternating electrical current through a coil, which induces eddy currents in the tube sheet. Any defects in the material will cause changes in the eddy currents, which can be detected and analyzed.   These methods can be used individually or in combination to provide a comprehensive inspection and testing of tube sheets. The choice of method(s) used will depend on the type of equipment, the material of the tube sheet, and the level of sensitivity required for defect detection.   Wuxi Changrun has provided high-quality tube sheets, nozzles, flanges, and customized forgings for heat exchangers, boilers, pressure vessels, etc. to many well-known petrochemical enterprises at home and abroad. Our customers include PetroChina, Sinopec, Chevron, Bayer, Shell, BASF, etc. Send your drawings to sales@wuxichangrun.com We will provide you with the best quotation and the highest quality products.    
    Read More

Leave A Message

Leave A Message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
Submit

Home

Products

whatsApp

contact